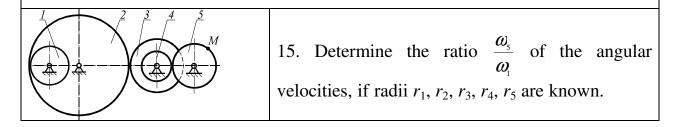
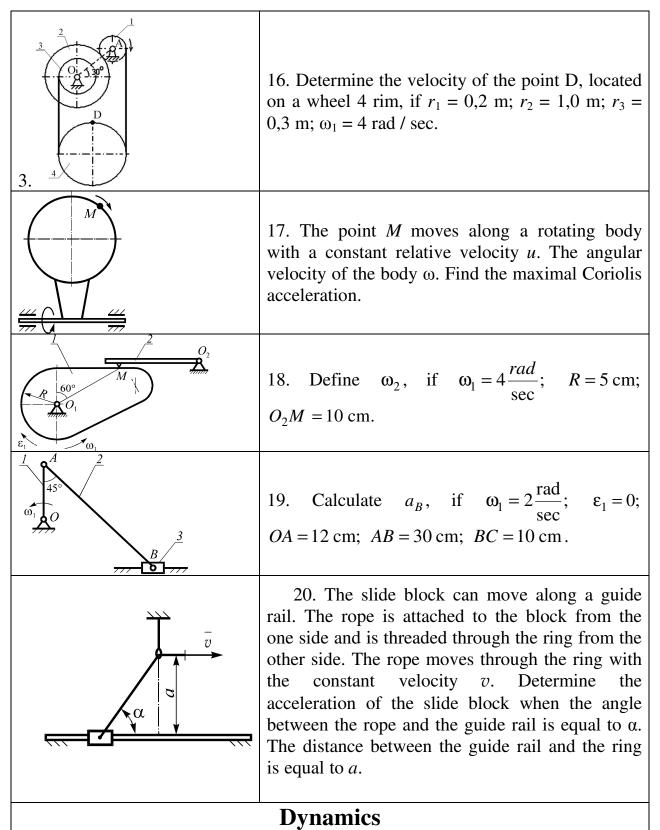
Statics	
A = B = B = B	1. The forces F_1 and F_2 are equal to 5 N and 30 N relatively. Rods are weightless. Calculate the reaction force in the rod 2.
	2. The homogeneous sphere of 30 <i>N</i> weight rests on the smooth surface at points <i>A</i> and <i>B</i> . The radius of the sphere <i>R</i> is equal to 20 cm. Find the surface reaction force at point <i>A</i> , if $l = 20$ cm.
	3. A weightless rod 1 of length l touches the vertical surface at point A and rests at point B on the ledge. The load 2 of weight G is attached to the end of the rod 1 at point B by the thread. The friction is neglected. Find the value of angle α if the distance a is known.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4. Find the force acting in the rod 5 of the shown truss, if $F_1 = 10 \ kN$, $F_2 = 20 \ kN$.
$\frac{2}{\overline{G_2}}$	5. Determine the force of the cylinder 1 pressure on the vertical wall if $G_1 = 15 N$; $G_2 = 30 N$, $\alpha = 60^{\circ}$.
	6. Find the minimal value of the friction coefficient for the case of the shown homogeneous rod equilibrium, considering $\alpha = 30^{\circ}$.
\overline{Q}	7. Find the moment of the fixation at point <i>A</i> , if $P = 5 N$; $Q = 30 N$, $q = 2 N/m$; $M = 10 N \cdot m$, $a = 4m$, $b = 5 m$, $c = 3 m$.

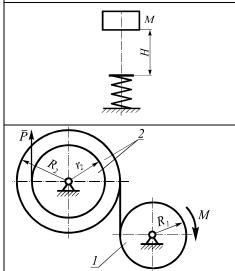
8. Thin plate of mass <i>m</i> is put between two vertical springs. The free length of each spring is <i>l</i> . Under the action of force <i>P</i> the upper spring is compressed by Δl_1 , the lower – by Δl_2 . Determine the size of length <i>x</i> at the equilibrium.
9. The homogeneous disc of weight P and the radius R rests on a rough horizontal surface and contacts with the rough vertical wall. The sliding friction coefficients for both planes are equal to f . Evaluate the value of pair of forces moment M applied to the disk for the case of its equilibrium.
10. A semicircle of 5 cm radius was cut from the rectangular triangle. Define the distance y , if the center of gravity of the resulting figure is located on distance 15 cm from point A .


Kinematics


11. Find the curvature radius of the point *A* trajectory if its coordinates change by the following laws: $x(t) = 5 - 2\sin\frac{\pi t}{2}$; $y(t) = 4\cos^2\frac{\pi t}{4} - 9$.

12. The material point moves and its covered distance is proportional to the difference between the initial velocity v_0 and the velocity v at the present moment. The coefficient of proportionality is k. Determine the dependence of the point velocity on the time.

13. The point starts to move from the rest along a circle of radius r = 200 m with a constant tangential acceleration of $1 m/s^2$. Determine the total acceleration of the point at time t = 20 sec.


14. The tangential acceleration of a point changes by the law $a_{\tau} = 2\pi t$, cm/sec^2 . The point is at a distance of 5 cm from the axis of a rotating body. Determine its normal acceleration after 3 seconds after the start of body movement.

21. Three constant forces F_1 , F_2 , F_3 in the same direction act the material point of 3 kg mass, and give point the acceleration of 3 m/sec². The ratio of the forces modules is 1:2:3 relatively. Find the value of force F_3 .

22. The dynamic equation of the material point motion is $2\ddot{x}+2\dot{x}+cx=0$. Find the minimal value of the stiffness coefficient *c* for the case of the damped oscillations. 23. A body was thrown at angle α_0 to the horizontal. The initial velocity of the body was v_0 . Calculate the time spent on the reaching of point maximal height.

24. The load M of mass m = 0.5 kg falls without initial velocity from the height H = 1.2 m and reaches the spring with the stiffness coefficient c = 196 N/m. Determine the value of maximal spring compression h.

25. Find the angular acceleration of the body 2, if $m_1, m_2, R_1, R_2, r_2, i_{1x}, i_{2x}$, *P* and *M* are known.

26. A kettlebell of the clock mechanism has a 6 kg mass and drops to 120 cm per 24 hours. Determine the gravity force of the kettlebell.

27. A rocket moves vertically upwards with a constant acceleration a. Evaluate the time which the rocket needs to have the three times less mass if the gas relative velocity u is constant and the resistance of the atmosphere is neglected.

28. A hammer of 0.6 kg mass strikes the anvil with a velocity v = 10 m/sec. The impact lasted 0.0003 sec. Determine the average force of the impact if it is inelastic.

metastic.	
	29. The motion trajectory of a material point of mass <i>m</i> in the horizontal plane is equal to a circle. The point is hanged by a thread of length <i>l</i> , the angle of deviation from the vertical is α . Find the velocity of the point.
	30. The thread is wounded on the homogeneous cylinder of mass <i>m</i> and radius <i>r</i> . A free end <i>A</i> of the thread moves vertically with a constant acceleration a_A . Determine the acceleration of the cylinder center of mass.