Brain-ring 2016

	Statics				
1	The end <i>A</i> of curved rod <i>AB</i> of $10\sqrt{2}$ N weight is fixed by the hinge. The second end of rod is in the equilibrium due to the cable <i>BC</i> . Determine the sum of the hinge <i>A</i> and cable <i>BC</i> reaction forces if $\alpha = 45^{\circ}$.				
2	A beam of 50 N weight rests on the smooth ledge A and on the rough surface B . Find the maximal value of angle α for the equilibrium of the beam if the friction coefficient between the beam and the ledge B is equal to 0,3.	$\frac{0.51}{4} + \frac{1.51}{\overline{G}} + \frac{B}{\overline{G}} + \frac{1}{\overline{G}}$			
3	Rectangular plate of mass $m = 5 \text{ kg}$ is located in the vertical plane on the rough surface. Plate edges $a = 0.8 \text{ m } \text{ m } b = 2 \text{ m}$. Define the minimal absolute value of a force applied to point A able to overturn the plate around point <i>K</i> . Plane moves without sliding.				
4	Determine the size <i>h</i> , if the horizontal force $P = 100$ N applied to the cylinder of radius $R = 40$ cm and weight $G = 240$ N can overturn the cylinder over the stair of height $a = 10$ cm.				
5	Find the ratio q_1/q_2 of the distributed forces applied to the weightless horizontal beam if $R_A = 1,5R_B$.	\overline{q}_{2}			
6	Determine of the horizontal displacement of the equilateral trapezoid center of mass after cutting the triangle <i>CDE</i> . Dimensions are shown in the figure.	$\begin{array}{c} E \\ \hline \\ \hline \\ \hline \\ 15 \\ \hline \\ 40 \\ \hline \\ \hline \\ 15 \\ \hline \\ D \\ \hline \hline \hline \\ D \\ \hline \hline \hline \hline$			
7	Find the value of angle α for case of equilibrium of the shown construction if $F = 16$ N, $q = 6$ N/m.	$ \begin{array}{c} $			
8	Define the reaction force in rod 5 of the plain truss if $F = 140 \text{ kH}.$	$\begin{array}{c} & F \\ & 1 & 609 \\ & 45^{\circ} \\ & 2 \\ & 3 & 5 \\ & 8 \\ & & 6 \\ & & & 7 \\ & & & 9 \\ & & & & \\ & & & & & \\ & & & &$			
9	Two weightless rods are fixed in the hinges O_1 and O_2 and are connected by the hinge <i>B</i> . A load of mass $m = 5$ kg is applied to the end <i>A</i> . Find the necessary value of force <i>F</i> , for the equilibrium of the construction if $AB = 1$ m; $AO_1 = 0,2$ m; $BC = 0,75$ m; $BO_2 = 0,5$ m.				
10	The rectangular plate of 45 kN weight is in the equilibrium. Determine the reaction force in the revolute joint <i>B</i> if the plate is under the evenly distributed force with an intensity $q = 10$ kN/m. $AC = BD = 0.8$ m.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

	Kinematics					
11	The material point moves from the position of rest along a circle of radius 8 m. Normal- acceleration of the point depends on the time by the law $a_n = 2t^4$. Determine full acceleration of the point at time equal to 1 second after the beginning of points' motion.					
12	Point moves so that the covered distance <i>s</i> is proportional to the difference of the initial velocity v_0 and the velocity <i>v</i> at the considered moment of time. The proportionality coefficient is equal to <i>k</i> . Define the dependence $a(v)$ of the points' acceleration on its velocity.					
13	The disk rotates relative to the fixed axis and its rotational angle $\varphi = 1,5t^2$ -1, rad. Find the distance between the point <i>M</i> and the rotational axis if the acceleration of the point is equal to 10 cm/s ² at time $t_1 = 1$ s.					
14	Connected to the cable load 2 rises with acceleration $a_2 = 0.2t \text{ (m/s}^2)$ from its rest. Disc 1 has a diameter of 80 cm. At what moment of time (counting from the start of loads' motion) angle between velocity and acceleration of the disc points will be 45^0 ?					
15	Find the value of angle φ if $v_B = 52$ cm/s, $\omega_1 = 2$ rad/s, $OA = 15$ cm.					
16	In the shown mechanism wheel 1 rotates by the law $\varphi_1 = 9t$, rad. Define the radius of wheel 6 if its rotational velocity is equal to 6 rad/s, radii of wheels are: $R_1 = 12$ cm, $R_2 = 8$ cm, $R_3 = 16$ cm, $R_4 = 18$ cm, $R_5 = 14$ cm.					
17	At time $t = 2$ s determine the ratio $\frac{y}{x}$ of absolute vertical (y) and horizontal (x) coordinates of load P, moving along the edge AB by the law $s=0,2t^2$ (m). The position of body ADB changes by the $t\sqrt{3}$ (m); $AD = 1,2$ m; $\alpha = 30^\circ$. At the initial moment of time load P was at point A of the prism.					
18	Find the value of the Coriolis acceleration of point <i>M</i> moving along the rim of a rotating disk, if $\varphi(t) = 8sin\frac{\pi t}{8}$ rad; $s(t) = 2,5\pi t^2$ cm; $R = 5$ cm; time $t = 2$ s.	B P A A A A A A A A A A A A A A A A A A				
19	For the shown position of the mechanism it is necessary to determine the velocity of point <i>B</i> , if $\omega_1 = 4 \text{ rad/s}$, $O_1A = O_2E = 30 \text{ cm}$, $O_2E = 2ED$.	$A = E$ $C_1 = C_2 = C_$				
20	Find the acceleration of point <i>B</i> of the wheel rolling without slipping if $\varphi = t^3$ pag; time $t = 1$ s; $AB = 12$ cm; $AC = 25$ cm.					

Dynamics				
21	Given: $m = 1$ KF; $\alpha = 30^{\circ}$; resistance force $F_{res} = bt - k$; $v_0 = 0$; $x_0 = 0$. Define the time from the start of point motion to its stopping if $b = 0,4$; $k = 0,6$.	$x = \frac{M}{\alpha}$		
22	The motion of a material point is described by the differential Determine the period of oscillations of the point.	equation $0,5\ddot{x}+20\dot{x}+128x=0$.		
23	Two gears of radiuses $R_1 = 10$ cm and $R_2 = 20$ cm are in tooth- ing. The gear 2 is under the resistance torque $M_r = 10$ N·m. The load 3 of mass $m_3 = 10$ kr is hanged to the gear 2. Determine the power of the rotational torque M_{rot} , applied to the gear 1 if load 3 has the constant velocity value $v_3 = 10$ m/s.	M _w ² M _w ² M _w ³		
24	The material point of mass $m = 5$ kg is fixed on the end of weigh second end of the rod is fixed by a hinge so that the rod can rotate a plane with a constant angular velocity. Find the value of this angular v a maximum stretching force $F_{\text{max}}^{\text{streching}} = 100$ N.	tless rod of length $l = 1$ m. The wround the hinge in the vertical velocity if the rod can withstand		
25	A ball of mass 250 gram starts to move inside the tube in the vertical plane without initial velocity. At the initial moment of time the shown spring of rigidity $c = 10$ N/cm was compressed by 5 cm. Determine the maximal height of the ball rising if $S = 0,2$ m, friction coefficient $f = 0,3$. The friction if neglected on the curved parts of the tube.	2R 2R		
26	Vertical lift of the cargo of mass $m = 1000$ kg is ensured by the r dius $R = 0.3$ m. The pulley rotates with the angular acceleration $\varepsilon =$ change of the rope tension force.	rope wound onto a pulley of ra- $2t$ rad/s ² . Define the law of the		
27	Homogeneous disk of mass 250 kg and radius $R = 0.26 \text{ m}$ ro- tates around the motionless axis under the rotating torque $M = 180 \text{ N} \cdot \text{m}$. The rotation of the disk is being decelerated by the brake shoe. The brake shoe act the disk with the force $N = 800 \text{ N}$. Find the friction coefficient between the disk and the brake shoe if the rotational acceleration of the disk is 15 rad/s ² .			
28	Define the kinetic energy of the slide <i>B</i> , if it is given that: $m_{\rm B} = 10 \text{ kg}, \ \omega_1 = 2 \text{ rad/s}, \ OA = 0.5 \text{ m}, \ AC = 0.3 \text{ m}, \ CB = 1.2 \text{ m}, \ AC \perp AO.$			
29	The disk of radius r , can rotate around axis O . The shock impulse S hit the disk along its central line so that the shock impulse of the reaction force in point O is two times less than impulse S . Determine the distance h from the axis O to the center of the disk.			
30	Find the dependence of the angular velocity of wheel 2 on the displacement <i>s</i> of the load 1. The wheel rolls without slipping. Masses $m_2 = 2m_1 = 4m$; friction coefficient $f = 0,25$; wheel radii $R_2 = 2r_2 = 0,4m$; $\alpha = 45^\circ$, $I_{2x} = m_2r_2^2$.			